Search results for " Nerve Tissue Proteins"

showing 7 items of 7 documents

Evidence for a common progenitor of epithelial and mesenchymal components of the liver

2013

Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. The liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the …

Cellular differentiationLiver Stem CellDesminMice0302 clinical medicineMESH: AnimalsMESH: Nerve Tissue ProteinsHepatic stellate cellCells Cultured0303 health sciencesMesenchymal Stromal CellStem CellsCell DifferentiationCell biologyEndothelial stem cellMESH: DesminMESH: Models AnimalLiverMESH: Epithelial CellsDifferentiationModels Animal030211 gastroenterology & hepatologyStem cellMESH: Stem Cell Transplantationhepatic stellate cell; cell transplantation; liver stem cell; differentiationMESH: Cells CulturedMESH: Cell DifferentiationCell transplantation; Differentiation; Hepatic stellate cell; Liver stem cell; Animals; Cell Differentiation; Cell Line; Cell Lineage; Cell Proliferation; Cells Cultured; Desmin; Epithelial Cells; Glial Fibrillary Acidic Protein; In Vitro Techniques; Liver; Mesenchymal Stromal Cells; Mice; Mice Nude; Models Animal; Nerve Tissue Proteins; Stem Cell Transplantation; Stem Cells; Cell Biology; Molecular BiologyClinical uses of mesenchymal stem cellsMice NudeNerve Tissue ProteinsMESH: Stem Cells[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyIn Vitro TechniquesCell Line03 medical and health sciencesStem CellMESH: Cell ProliferationGlial Fibrillary Acidic ProteinMESH: Mice NudeAnimalsCell LineageProgenitor cellMESH: MiceMolecular Biology030304 developmental biologyCell ProliferationOriginal PaperEpithelial CellAnimalIn Vitro TechniqueMesenchymal stem cellEpithelial CellsMesenchymal Stem CellsCell BiologyMESH: Cell LineageMESH: Cell LineLiver stem cellNerve Tissue ProteinHepatic stellate cellMESH: Mesenchymal Stromal CellsCell transplantationMESH: LiverStem Cell Transplantation
researchProduct

Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth

2010

AbstractBackgroundThe antenno-maxilary complex (AMC) forms the chemosensory system of theDrosophilalarva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1,V1), presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS) were affected. Our earlier reports on larval AMC did not argue in favour of a role ofprosin cell fate decision, but strongly suggested thatproscould be involved in the control of other aspect of neuronal development. In order to identify these fu…

Central Nervous SystemMESH : Transcription FactorsMESH: DrosophilaOF-FUNCTION SCREEN;MUSCA-DOMESTICA L;HOUSE-FLY LARVA;FINE-STRUCTURE;AXON GUIDANCE;TRANSCRIPTION FACTOR;PATTERN-FORMATION;GENETIC-ANALYSIS;NERVOUS-SYSTEMGenes InsectMESH: Genes InsectAXON GUIDANCEMUSCA-DOMESTICA L0302 clinical medicineMESH: Gene Expression Regulation DevelopmentalCluster AnalysisDrosophila ProteinsMESH: AnimalsTRANSCRIPTION FACTORMESH: Nerve Tissue ProteinsMESH : Nerve Tissue ProteinsOF-FUNCTION SCREENOligonucleotide Array Sequence AnalysisGenetics0303 health sciencesMESH : Central Nervous SystemMicrobiology and ParasitologyMESH : Genes InsectGene Expression Regulation DevelopmentalNuclear ProteinsMESH: Transcription FactorsNull alleleMicrobiologie et ParasitologieMESH : Oligonucleotide Array Sequence Analysis[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Larva[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]DrosophilaDrosophila ProteinResearch ArticleBiotechnologylcsh:QH426-470MESH: Drosophila Proteinslcsh:BiotechnologyNerve Tissue ProteinsBiotechnologiesBiology03 medical and health sciencesMESH: Gene Expression ProfilingGENETIC-ANALYSIS[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]lcsh:TP248.13-248.65GeneticsAnimalsMESH : Cluster AnalysisMESH: Central Nervous SystemAlleleMESH : DrosophilaAlleles030304 developmental biologyMESH : LarvaMicroarray analysis techniquesHOUSE-FLY LARVAGene Expression ProfilingMESH : Gene Expression ProfilingMESH: AllelesWild typeMESH : Nuclear ProteinsProsperobiology.organism_classificationMESH : Drosophila ProteinsMESH: Cluster AnalysisNERVOUS-SYSTEMGene expression profilinglcsh:GeneticsMESH: Oligonucleotide Array Sequence AnalysisHomeoboxMESH : AnimalsMESH : Gene Expression Regulation DevelopmentalMESH : AllelesMESH: Nuclear ProteinsMESH: Larva030217 neurology & neurosurgeryTranscription FactorsPATTERN-FORMATIONFINE-STRUCTURE
researchProduct

Lack of SCN1A Mutations in Familial Febrile Seizures

2002

Summary:  Purpose: Mutations in the voltage-gated sodium channel subunit gene SCN1A have been associated with febrile seizures (FSs) in autosomal dominant generalized epilepsy with febrile seizures plus (GEFS+) families and severe myoclonic epilepsy of infancy. The present study assessed the role of SCN1A in familial typical FSs. Methods: FS families were selected throughout a collaborative study of the Italian League Against Epilepsy. For each index case, the entire coding region of SCN1A was screened by denaturant high-performance liquid chromatography. DNA fragments showing variant chromatograms were subsequently sequenced. Results: Thirty-two FS families accounting for 91 affected indiv…

GAMMA-2-SUBUNITMaleFebrile convulsionsDNA Mutational Analysismedicine.disease_causePolymerase Chain ReactionSodium ChannelsFebrileEpilepsyExonPLUSDNA Mutational AnalysisGene duplicationChildIndex caseChromatography High Pressure LiquidGeneticsChromatographyMutationIdiopathic epilepsyExonsNeurologyIon channelsHigh Pressure LiquidFemaleGeneralized epilepsy with febrile seizures plusMutationsAdultAdolescentGENERALIZED EPILEPSYNerve Tissue ProteinsSeizures FebrileSeizuresGeneticsmedicineHumansFamilybusiness.industryCONVULSIONSGene AmplificationSODIUM-CHANNELmedicine.diseaseGENEDYSFUNCTIONNAV1.1 Voltage-Gated Sodium ChannelFebrile convulsions; Genetics; Idiopathic epilepsy; Ion channels; Mutations; Adolescent; Adult; Child; Chromatography High Pressure Liquid; DNA Mutational Analysis; Exons; Female; Gene Amplification; Humans; Male; Mutation; NAV1.1 Voltage-Gated Sodium Channel; Nerve Tissue Proteins; Polymerase Chain Reaction; Seizures Febrile; Sodium Channels; FamilyMutationMyoclonic epilepsyNeurology (clinical)businessEpilepsia
researchProduct

Clinical and Biological Heterogeneity in Children with Moderate Asthma

2003

To evaluate the relationship between inflammatory markers and severity of asthma in children, the amount of interleukin-8 (IL-8) and granulocyte/macrophage colony-stimulating factor (GM-CSF) released by peripheral blood mononuclear cells, exhaled nitric oxide (FE NO) levels, p65 nuclear factor-kappaB subunit, and phosphorylated IkBalpha expression by peripheral blood mononuclear cells were assessed in six control subjects, 12 steroid-naives subjects with intermittent asthma, and 17 children with moderate asthma. To investigate their predictive value, biomarker levels were correlated with the number of exacerbations during a 18-month follow-up period. We found that GM-CSF release was higher …

MaleExacerbationAnti-Inflammatory AgentsCritical Care and Intensive Care MedicineSynaptotagminsMedicineChildSalmeterol XinafoateCalcium-Binding ProteinMembrane GlycoproteinsRespiratory diseaseNF-kappa Binflammatory markersBronchodilator AgentsAnti-Inflammatory AgentSynaptotagmin IBiomarker (medicine)FemaleMembrane GlycoproteinAndrostadienes; Anti-Inflammatory Agents; NF-kappa B; Leukocytes Mononuclear; Membrane Glycoproteins; Granulocyte-Macrophage Colony-Stimulating Factor; Humans; Synaptotagmins; Albuterol; Asthma; Child; Receptors Cell Surface; Nerve Tissue Proteins; Nitric Oxide; Synaptotagmin I; Calcium-Binding Proteins; Interleukin-8; Adolescent; Bronchodilator Agents; Male; Biological Markers; Femalemedicine.symptomHumanmedicine.drugPulmonary and Respiratory MedicineAdolescentNerve Tissue ProteinsReceptors Cell SurfaceInflammationNitric OxidePeripheral blood mononuclear cellFluticasone propionateHumansAlbuterolBronchodilator AgentAsthmaAndrostadienefluticasone propionatebusiness.industryCalcium-Binding ProteinsInterleukin-8Granulocyte-Macrophage Colony-Stimulating Factormedicine.diseaseSynaptotagminAsthmaAndrostadienesasthma; inflammatory markers; fluticasone propionateNerve Tissue ProteinBiological MarkerExhaled nitric oxideImmunologyLeukocytes MononuclearFluticasonebusinessBiomarkersAmerican Journal of Respiratory and Critical Care Medicine
researchProduct

Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants

2019

Purpose: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. Methods: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. Results: The number of rare likely deleterious variants in functionally intolerant genes (“other hits”) correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with thei…

MaleParents0301 basic medicineProbandNeuronalGenetic Carrier Screening16p11.2 deletion030105 genetics & heredityCognitionFamily historyNeural Cell Adhesion MoleculesGenetics (clinical)Exome sequencingSequence DeletionGeneticsGenetic Carrier ScreeningPhenotypePenetrancePedigreePhenotypeAutistic Disorder/genetics; Autistic Disorder/physiopathology; Cell Adhesion Molecules Neuronal/genetics; Chromosomes Human Pair 16/genetics; Cognition/physiology; DNA Copy Number Variations/genetics; Female; Gene Expression Regulation/genetics; Genetic Background; Genetic Carrier Screening; Humans; Male; Methyltransferases/genetics; Nerve Tissue Proteins/genetics; Parents; Pedigree; Phenotype; Proteins/genetics; Sequence Deletion/genetics; Siblings; 16p11.2 deletion; CNV; autism; modifier; phenotypic variabilityFemaleGenetic BackgroundHumanDNA Copy Number VariationsCell Adhesion Molecules NeuronalCNVautismNerve Tissue ProteinsBiologyChromosomesArticle03 medical and health sciencesmental disordersmedicineHumansAutistic DisorderBiologyGenemodifierPair 16SiblingsCalcium-Binding ProteinsProteinsMethyltransferasesmedicine.disease16p11.2 deletion; autism; CNV; modifier; phenotypic variability; Genetics (clinical)Cytoskeletal Proteins030104 developmental biologyGene Expression Regulation[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsAutismphenotypic variabilityHuman medicine16p11.2 deletion; autism; CNV; modifier; phenotypic variability; Autistic Disorder; Cell Adhesion Molecules Neuronal; Chromosomes Human Pair 16; Cognition; DNA Copy Number Variations; Female; Gene Expression Regulation; Genetic Background; Humans; Male; Methyltransferases; Nerve Tissue Proteins; Parents; Pedigree; Phenotype; Proteins; Sequence Deletion; Siblings; Genetic Carrier ScreeningCell Adhesion MoleculesChromosomes Human Pair 16Transcription FactorsGenetics in Medicine
researchProduct

UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function.

2010

International audience; This work aims to review uridine diphosphate (UDP)-glucuronosyltransferase (UGT) expression and activities along different neuronal structures involved in the common physiological process of olfaction: olfactory epithelium, olfactory bulb, and olfactory cortex. For the first time, using high-throughput in situ hybridization data generated by the Allen Brain Atlas (ABA), we present quantitative analysis of spatial distribution of UGT genes in the mouse brain. The olfactory area is a central nervous system site with the highest expression of UGTs, including UGT isoforms not previously identified in the brain. Since there is evidence of the transfer of xenobiotics to th…

Olfactory systemMESH : RNA Messenger[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH: GlucuronosyltransferaseMESH : Blood-Brain BarrierMESH: Blood-Brain Barrierchemistry.chemical_compound0302 clinical medicineMESH: SmellPharmacology (medical)MESH: AnimalsMESH: Uridine DiphosphateMESH: Nerve Tissue ProteinsGlucuronosyltransferaseGeneral Pharmacology Toxicology and PharmaceuticsMESH : Olfactory BulbMESH : Nerve Tissue Proteins0303 health sciencesMESH: Gene Expression Regulation EnzymologicOlfactory PathwaysOlfactory BulbMESH : OdorsCell biologySmellmedicine.anatomical_structureBlood-Brain BarrierMESH: Olfactory Bulbmedicine.medical_specialtyCentral nervous systemNerve Tissue ProteinsIn situ hybridizationOlfactionBiologydigestive systemGene Expression Regulation EnzymologicOlfactory Receptor NeuronsUridine DiphosphateMESH : Gene Expression Regulation Enzymologic03 medical and health sciencesInternal medicinemedicineAnimalsRNA MessengerMESH : Uridine Diphosphate030304 developmental biologyMESH: RNA MessengerMESH: OdorsMESH : Olfactory PathwaysMESH : GlucuronosyltransferaseMESH: Olfactory Receptor NeuronsOlfactory bulbUridine diphosphateEndocrinologychemistryOdorantsMESH : SmellMESH : Olfactory Receptor NeuronsMESH : AnimalsOlfactory epithelium[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryFunction (biology)MESH: Olfactory Pathways
researchProduct

IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules.

2020

It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. G…

ScienceSialoglycoproteinsQCell MembraneCell PolarityEpithelial CellsNerve Tissue ProteinsApicobasal polaritySettore MED/08 - Anatomia PatologicaActins Cell Membrane Cell Polarity Epithelial Cells Female Morphogenesis Nerve Tissue Proteins Protein Transport Sialoglycoproteins rab GTP-Binding ProteinsActinsArticleProtein Transportrab GTP-Binding ProteinsMorphogenesisHumanslcsh:QFemalelcsh:ScienceNature communications
researchProduct